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Statistics for the Life Sciences is an introductory text in statistics, specifically addressed 
to students specializing in the life sciences. Its primary aims are (1) to show students 
how statistical reasoning is used in biological, medical, and agricultural research;  
(2) to enable students to confidently carry out simple statistical analyses and to inter-
pret the results; and (3) to raise students’ awareness of basic statistical issues such as 
randomization, confounding, and the role of independent replication.

Style and Approach
The style of Statistics for the Life Sciences is informal and uses only minimal mathe-
matical notation. There are no prerequisites except elementary algebra; anyone who 
can read a biology or chemistry textbook can read this text. It is suitable for use by 
graduate or undergraduate students in biology, agronomy, medical and health sci-
ences, nutrition, pharmacy, animal science, physical education, forestry, and other 
life sciences.

Use of Real Data Real examples are more interesting and often more enlightening 
than artificial ones. Statistics for the Life Sciences includes hundreds of examples and 
exercises that use real data, representing a wide variety of research in the life sci-
ences. Each example has been chosen to illustrate a particular statistical issue. The 
exercises have been designed to reduce computational effort and focus students’ 
attention on concepts and interpretations.

Emphasis on Ideas The text emphasizes statistical ideas rather than computations or 
mathematical formulations. Probability theory is included only to support statistical 
concepts. The text stresses interpretation throughout the discussion of descriptive 
and inferential statistics. By means of salient examples, we show why it is important 
that an analysis be appropriate for the research question to be answered, for the 
statistical design of the study, and for the nature of the underlying distributions. We 
help the student avoid the common blunder of confusing statistical nonsignificance 
with practical insignificance and encourage the student to use confidence intervals 
to assess the magnitude of an effect. The student is led to recognize the impact on 
real research of design concepts such as random sampling, randomization, efficiency, 
and the control of extraneous variation by blocking or adjustment. Numerous exer-
cises amplify and reinforce the student’s grasp of these ideas.

The Role of Technology The analysis of research data is usually carried out with 
the aid of a computer. Computer-generated graphs are shown at several places in 
the text. However, in studying statistics it is desirable for the student to gain 
 experience working directly with data, using paper and pencil and a hand-held 
calculator, as well as a computer. This experience will help the student appreciate 
the nature and purpose of the statistical computations. The student is thus  prepared 
to make intelligent use of the computer—to give it appropriate  instructions and 
properly interpret the output. Accordingly, most of the exercises in this text  
are intended for hand calculation. However, electronic data files are provided  
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at www.pearsonglobaleditions.com/Samuels for many of the exercises, so that a 
computer can be used if desired. Selected exercises are identified as Computer 
Problems to be completed with use of a computer. (Typically, the computer exer-
cises require calculations that would be unduly burdensome if carried out by hand.)

Organization
This text is organized to permit coverage in one semester of the maximum number 
of important statistical ideas, including power, multiple inference, and the basic prin-
ciples of design. By including or excluding optional sections, the instructor can also 
use the text for a one-quarter course or a two-quarter course. It is suitable for a ter-
minal course or for the first course of a sequence.

The following is a brief outline of the text.

Unit I: Data and Distributions

Chapter 1: Introduction. The nature and impact of variability in biological data. The 
hazards of observational studies, in contrast with experiments. Random sampling.
Chapter 2: Description of distributions. Frequency distributions, descriptive statis-
tics, the concept of population versus sample.
Chapters 3, 4, and 5: Theoretical preparation. Probability, binomial and normal dis-
tributions, sampling distributions.

Unit II: Inference for Means

Chapter 6: Confidence intervals for a single mean and for a difference in means.
Chapter 7: Hypothesis testing, with emphasis on the t test. The randomization test, 
the Wilcoxon-Mann-Whitney test.
Chapter 8: Inference for paired samples. Confidence interval, t test, sign test, and 
Wilcoxon signed-rank test.

Unit III: Inference for Categorical Data

Chapter 9: Inference for a single proportion. Confidence intervals and the chi-
square goodness-of-fit test.
Chapter 10: Relationships in categorical data. Conditional probability, contingency 
tables. Optional sections cover Fisher’s exact test, McNemar’s test, and odds ratios.

Unit IV:  Modeling Relationships

Chapter 11: Analysis of variance. One-way layout, multiple comparison procedures, 
one-way blocked ANOVA, two-way ANOVA. Contrasts and multiple comparisons 
are included in optional sections.
Chapter 12: Correlation and regression. Descriptive and inferential aspects of cor-
relation and simple linear regression and the relationship between them.
Chapter 13: A summary of inference methods.

Most sections within each chapter conclude with section-specific exercises. Chap-
ters and units conclude with supplementary exercises that provide opportunities 
for students to practice integrating the breadth of methods presented within the 
chapter or across the entire unit. Selected statistical tables are provided at the back 
of the book; other tables are available at www.pearsonglobaleditions.com/Samuels. 
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The tables of critical values are especially easy to use because they follow mutually 
consistent layouts and so are used in essentially the same way.

Optional appendices at the back of the book and available online at www. 
pearsonglobaleditions.com/Samuels give the interested student a deeper look into 
such matters as how the Wilcoxon-Mann-Whitney null distribution is calculated.

Changes to the Fifth Edition
• Chapters are grouped by unit, and feature Unit Highlights with reflections, 

summaries, and additional examples and exercises at the end of each unit that 
often require connecting ideas from multiple chapters.

• We added material on randomization-based inference to introduce or motivate 
most inference procedures presented in this text. There are now presentations 
of randomization methods at the beginnings of Chapters 7,  8, 10, 11, and 12.

• New exercises have been added throughout the text. Many exercises from the 
previous edition that involved calculation and reading tables have been 
updated to exercises that require interpretation of computer output.

• We replaced many older examples throughout the text with examples from 
current research from a variety life science disciplines.

• Chapter notes have been updated to include references to new examples. 
These are now available online at www.pearsonglobaleditions.com/Samuels 
with some selected notes remaining in print.

Instructor Supplements
Instructor’s Solutions Manual (downloadable) (ISBN-13: 978-1-292-10183-5; 
ISBN-10: 1-292-10183-0) Solutions to all exercises are available as a downloadable 
manual from Pearson Education’s online catalog at www.pearsonglobaleditions.
com/Samuels. Careful attention has been paid to ensure that all methods of solution 
and notation are consistent with those used in the core text.

PowerPoint Slides (downloadable) (ISBN-13: 978-1-292-10184-2; ISBN-10: 1-292-
10184-9) Selected figures and tables from throughout the textbook are available as 
downloadable PowerPoint slides for use in creating custom PowerPoint lecture pre-
sentations. These slides are available for download at www.pearsonglobaleditions.
com/Samuels.

Student Supplements
Data Sets The larger data sets used in examples and exercises in the book are avail-
able as .csv files at www.pearsonglobaleditions.com/Samuels
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StatCrunch™ StatCrunch is powerful web-based statistical software that allows 
users to perform complex analyses, share data sets, and generate compelling reports 
of their data. The vibrant online community offers tens of thousands of shared data 
sets for students to analyze.

• Collect. Users can upload their own data to StatCrunch or search a large library 
of publicly shared data sets, spanning almost any topic of interest. Also, an 
online survey tool allows users to quickly collect data via web-based surveys.

• Crunch. A full range of numerical and graphical methods allows users to ana-
lyze and gain insights from any data set. Interactive graphics help users under-
stand statistical concepts and are available for export to enrich reports with 
visual representations of data.

• Communicate. Reporting options help users create a wide variety of visually 
appealing representations of their data.

StatCrunch access is available to qualified adopters. StatCrunch Mobile is now 
 available—just visit www.statcrunch.com/mobile from the browser on your smart-
phone or tablet. For more information, visit our website at www.StatCrunch.com, or 
contact your Pearson representative.
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Chapte r 

1Introduction

 1.1  Statistics and the Life Sciences
Researchers in the life sciences carry out investigations in various settings: in the 
clinic, in the laboratory, in the greenhouse, in the field. Generally, the resulting data 
exhibit some variability. For instance, patients given the same drug respond some-
what differently; cell cultures prepared identically develop somewhat differently; 
adjacent plots of genetically identical wheat plants yield somewhat different amounts 
of grain. Often the degree of variability is substantial even when experimental con-
ditions are held as constant as possible.

The challenge to the life scientist is to discern the patterns that may be more or 
less obscured by the variability of responses in living systems. The scientist must try 
to distinguish the “signal” from the “noise.”

Statistics is the science of understanding data and of making decisions in the 
face of variability and uncertainty. The discipline of statistics has evolved in response 
to the needs of scientists and others whose data exhibit variability. The concepts and 
methods of statistics enable the investigator to describe variability and to plan 
research so as to take variability into account (i.e., to make the “signal” strong in 
comparison to the background “noise” in data that are collected). Statistical meth-
ods are used to analyze data so as to extract the maximum information and also to 
quantify the reliability of that information.

We begin with some examples that illustrate the degree of variability found in 
biological data and the ways in which variability poses a challenge to the biological 
researcher. We will briefly consider examples that illustrate some of the statistical 
issues that arise in life sciences research and indicate where in this book the issues 
are addressed.

The first two examples provide a contrast between an experiment that showed 
no variability and another that showed considerable variability.

Objectives

In this chapter we will look 
at a series of examples of 
areas in the life sciences in 
which statistics is used, with 
the goal of understanding 
the scope of the field of 
statistics. We will also
• explain how experiments 

differ from observational 
studies.

• discuss the concepts of 
placebo effect, blinding, 
and confounding.

• discuss the role of 
random sampling in 
statistics.

example 
1.1.1

vaccine for Anthrax Anthrax is a serious disease of sheep and cattle. In 1881, Louis 
Pasteur conducted a famous experiment to demonstrate the effect of his vaccine 
against anthrax. A group of 24 sheep were vaccinated; another group of 24 unvac-
cinated sheep served as controls. Then, all 48 animals were inoculated with a viru-
lent culture of anthrax bacillus. Table 1.1.1 shows the results.1 The data of Table 1.1.1 
show no variability; all the vaccinated animals survived and all the unvaccinated 
animals died. ■
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In contrast to Table 1.1.1, the data of Table 1.1.2 show variability; mice given the 
same treatment did not all respond the same way. Because of this variability, the 
results in Table 1.1.2 are equivocal; the data suggest that exposure to E. coli increases 
the risk of liver tumors, but the possibility remains that the observed difference in 
percentages (62% versus 39%) might reflect only chance variation rather than an 
effect of E. coli. If the experiment were replicated with different animals, the per-
centages might change substantially.

One way to explore what might happen if the experiment were replicated is 
to simulate the experiment, which could be done as follows. Take 62 cards and 
write “liver tumors” on 27 ( =  8 + 19) of them and “no liver tumors” on the other 
35 ( =  5 + 30). Shuffle the cards and randomly deal 13 cards into one stack (to 
correspond to the E. coli mice) and 49 cards into a second stack. Next, count the 
number of cards in the “E. coli stack” that have the words “liver tumors” on 
them—to correspond to mice exposed to E. coli who develop liver tumors—and 
record whether this number is greater than or equal to 8. This process represents 
distributing 27 cases of liver tumors to two groups of mice (E. coli and germ free) 
randomly, with E. coli mice no more likely, nor any less likely, than germ-free mice 
to end up with liver tumors.

If we repeat this process many times (say, 10,000 times, with the aid of a com-
puter in place of a physical deck of cards), it turns out that roughly 12% of the time 
we get 8 or more E. coli mice with liver tumors. Since something that happens 12% 
of the time is not terribly surprising, Table 1.1.2 does not provide significant evidence 
that exposure to E. coli increases the incidence of liver tumors. ■

example 
1.1.2

bacteria and cancer To study the effect of bacteria on tumor development, research-
ers used a strain of mice with a naturally high incidence of liver tumors. One group 
of mice were maintained entirely germ free, while another group were exposed to 
the intestinal bacteria Escherichia coli. The incidence of liver tumors is shown in 
Table 1.1.2.2

Response

Treatment

Vaccinated Not vaccinated

Died of anthrax 0 24

Survived 24 0

Total 24 24

Percent survival 100% 0%

table 1.1.1 Response of sheep to anthrax 

Response

Treatment

E. coli Germ free

Liver tumors 8 19

No liver tumors 5 30

Total 13 49

Percent with liver tumors 62% 39%

table 1.1.2 Incidence of liver tumors in mice 
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In Chapter 10 we will discuss statistical techniques for evaluating data such as 
those in Tables 1.1.1 and 1.1.2. Of course, in some experiments variability is minimal 
and the message in the data stands out clearly without any special statistical analy-
sis. It is worth noting, however, that absence of variability is itself an experimental 
result that must be justified by sufficient data. For instance, because Pasteur’s 
anthrax data (Table 1.1.1) show no variability at all, it is intuitively plausible to con-
clude that the data provide “solid” evidence for the efficacy of the vaccination. But 
note that this conclusion involves a judgment; consider how much less “solid” the 
evidence would be if Pasteur had included only 3 animals in each group, rather than 
24. Statistical analyses can be used to make such a judgment, that is, to determine if 
the variability is indeed negligible. Thus, a statistical view can be helpful even in the 
absence of variability.

The next two examples illustrate additional questions that a statistical approach 
can help to answer.

example 
1.1.3

Flooding and AtP In an experiment on root metabolism, a plant physiologist grew 
birch tree seedlings in the greenhouse. He flooded four seedlings with water for one 
day and kept four others as controls. He then harvested the seedlings and analyzed 
the roots for adenosine triphosphate (ATP). The measured amounts of ATP (nmoles 
per mg tissue) are given in Table 1.1.3 and displayed in Figure 1.1.1.3

The data of Table 1.1.3 raise several questions: How should one summarize the 
ATP values in each experimental condition? How much information do the data 
provide about the effect of flooding? How confident can one be that the reduced 
ATP in the flooded group is really a response to flooding rather than just random 
variation? What size experiment would be required in order to firmly corroborate 
the apparent effect seen in these data? ■

Flooded Control
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Figure 1.1.1 ATP concentration in birch tree roots

table 1.1.3  ATP concentration in 
birch tree roots (nmol/mg)

Flooded Control

1.45 1.70

1.19 2.04

1.05 1.49

1.07 1.91
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Chapters 2, 6, and 7 address questions like those posed in Example 1.1.3. One 
question that we can address here is whether the data in Table 1.1.3 are consistent 
with the claim that flooding has no effect on ATP concentration, or instead provide 
significant evidence that flooding affects ATP concentrations. If the claim of no 
effect is true, then should we be surprised to see that all four of the flooded observa-
tions are smaller than each of the control observations? Might this happen by chance 
alone? If we wrote each of the numbers 1.05, 1.07, 1.19, 1.45, 1.49, 1.91, 1.70, and 2.04 
on cards, shuffled the eight cards, and randomly dealt them into two piles, what is the 
chance that the four smallest numbers would end up in one pile and the four largest 
numbers in the other pile? It turns out that we could expect this to happen 1 time in 
35 random shufflings, so “chance alone” would only create the kind of imbalance 
seen in Figure 1.1.1 about 2.9% of the time (since 1/35 = 0.029). Thus, we have some 
evidence that flooding has an effect on ATP concentration. We will develop this idea 
more fully in Chapter 7.

example 
1.1.4

MAO and schizophrenia Monoamine oxidase (MAO) is an enzyme that is thought 
to play a role in the regulation of behavior. To see whether different categories of 
patients with schizophrenia have different levels of MAO activity, researchers col-
lected blood specimens from 42 patients and measured the MAO activity in the 
platelets. The results are given in Table 1.1.4 and displayed in Figure 1.1.2. (Values are 
expressed as nmol benzylaldehyde product per 108 platelets per hour.4) Note that it 
is much easier to get a feeling for the data by looking at the graph (Figure 1.1.2) than 
it is to read through the data in the table. The use of graphical displays of data is a 
very important part of data analysis. ■

To analyze the MAO data, one would naturally want to make comparisons 
among the three groups of patients, to describe the reliability of those comparisons, 
and to characterize the variability within the groups. To go beyond the data to a bio-
logical interpretation, one must also consider more subtle issues, such as the 
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Figure 1.1.2 MAO activity in patients with schizophrenia

table 1.1.4 MAO activity in patients with schizophrenia

Diagnosis MAO activity

I: 6.8 4.1 7.3 14.2 18.8

Chronic 
undifferentiated 
schizophrenia 
(18 patients)

9.9 7.4 11.9 5.2 7.8

7.8 8.7 12.7 14.5 10.7

8.4 9.7 10.6

II: 7.8 4.4 11.4 3.1 4.3

Undifferentiated 
with paranoid 
features 
(16 patients)

10.1 1.5 7.4 5.2 10.0

3.7 5.5 8.5 7.7 6.8

3.1

III: 6.4 10.8 1.1 2.9 4.5

Paranoid 
schizophrenia  
(8 patients)

5.8 9.4 6.8
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 following: How were the patients selected? Were they chosen from a common hos-
pital population, or were the three groups obtained at different times or places? 
Were precautions taken so that the person measuring the MAO was unaware of the 
patient’s diagnosis? Did the investigators consider various ways of subdividing the 
patients before choosing the particular diagnostic categories used in Table 1.1.4? At 
first glance, these questions may seem irrelevant—can we not let the measurements 
speak for themselves? We will see, however, that the proper interpretation of data 
always requires careful consideration of how the data were obtained.

Sections 1.2 and 1.3. as well as Chapters 2 and 8, include discussions of selection of 
experimental subjects and of guarding against unconscious investigator bias. In Chapter 11 
we will show how sifting through a data set in search of patterns can lead to serious mis-
interpretations and we will give guidelines for avoiding the pitfalls in such searches.

The next example shows how the effects of variability can distort the results of 
an experiment and how this distortion can be minimized by careful design of the 
experiment.

example 
1.1.5

Food choice by insect Larvae The clover root curculio, Sitona hispidulus, is a root-
feeding pest of alfalfa. An entomologist conducted an experiment to study food 
choice by Sitona larvae. She wished to investigate whether larvae would preferen-
tially choose alfalfa roots that were nodulated (their natural state) over roots whose 
nodulation had been suppressed. Larvae were released in a dish where both nodu-
lated and nonnodulated roots were available. After 24 hours, the investigator counted 
the larvae that had clearly made a choice between root types. The results are shown 
in Table 1.1.5.5

The data in Table 1.1.5 appear to suggest rather strongly that Sitona larvae prefer 
nodulated roots. But our description of the experiment has obscured an important 
point—we have not stated how the roots were arranged. To see the relevance of the 
arrangement, suppose the experimenter had used only one dish, placing all the nod-
ulated roots on one side of the dish and all the nonnodulated roots on the other side, 
as shown in Figure 1.1.3(a), and had then released 120 larvae in the center of the dish. 
This experimental arrangement would be seriously deficient, because the data of 
Table 1.1.5 would then permit several competing interpretations—for instance, 
(a) perhaps the larvae really do prefer nodulated roots; or (b) perhaps the two sides 
of the dish were at slightly different temperatures and the larvae were responding to 
temperature rather than nodulation; or (c) perhaps one larva chose the nodulated 
roots just by chance and the other larvae followed its trail. Because of these possi-
bilities the experimental arrangement shown in Figure 1.1.3(a) can yield only weak 
information about larval food preference.

(a) (b)

Figure 1.1.3 Possible arrangements of food choice 
experiment. The dark-shaded areas contain nodulated 
roots and the light-shaded areas contain nonnodulated 
roots.
(a) A poor arrangement.
(b) A good arrangement.

table 1.1.5 Food choice by Sitona larvae

Choice Number of larvae

Chose nodulated roots 46

Chose nonnodulated roots 12

Other (no choice, died, lost) 62

Total 120
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The experiment was actually arranged as in Figure 1.1.3(b), using six dishes 
with nodulated and nonnodulated roots arranged in a symmetric pattern. Twenty 
larvae were released into the center of each dish. This arrangement avoids the pit-
falls of the arrangement in Figure 1.1.3(a). Because of the alternating regions of 
nodulated and nonnodulated roots, any fluctuation in environmental conditions 
(such as temperature) would tend to affect the two root types equally. By using 
several dishes, the experimenter has generated data that can be interpreted even if 
the larvae do tend to follow each other. To analyze the experiment properly, we 
would need to know the results in each dish; the condensed summary in Table 1.1.5 
is not adequate. ■

In Chapter 11 we will describe various ways of arranging experimental material 
in space and time so as to yield the most informative experiment, as well as how to 
analyze the data to extract as much information as possible and yet resist the temp-
tation to overinterpret patterns that may represent only random variation.

The following example is a study of the relationship between two measured 
quantities.

example 
1.1.6

body size and energy expenditure How much food does a person need? To inves-
tigate the dependence of nutritional requirements on body size, researchers used 
underwater weighing techniques to determine the fat-free body mass for each of 
seven men. They also measured the total 24-hour energy expenditure during condi-
tions of quiet sedentary activity; this was repeated twice for each subject. The results 
are shown in Table 1.1.6 and plotted in Figure 1.1.4.6

A primary goal in the analysis of these data would be to describe the relation-
ship between fat-free mass and energy expenditure—to characterize not only the 
overall trend of the relationship, but also the degree of scatter or variability in the 
relationship. (Note also that, to analyze the data, one needs to decide how to handle 
the duplicate observations on each subject.) ■
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Figure 1.1.4 Fat-free mass and energy expenditure in 
seven men. Each man is represented by a different symbol.

table 1.1.6 Fat-free mass and energy expenditure

Subject
Fat-free mass 

(kg)
24-hour energy 

expenditure (kcal)

1 49.3 1,851 1,936

2 59.3 2,209 1,891

3 68.3 2,283 2,423

4 48.1 1,885 1,791

5 57.6 1,929 1,967

6 78.1 2,490 2,567

7 76.1 2,484 2,653
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The focus of Example 1.1.6 is on the relationship between two variables: fat-free 
mass and energy expenditure. Chapter 12 deals with methods for describing such 
relationships, and also for quantifying the reliability of the descriptions.

A Look AheAd

Where appropriate, statisticians make use of the computer as a tool in data analysis; 
computer-generated output and statistical graphics appear throughout this book. 
The computer is a powerful tool, but it must be used with caution. Using the com-
puter to perform calculations allows us to concentrate on concepts. The danger when 
using a computer in statistics is that we will jump straight to the calculations without 
looking closely at the data and asking the right questions about the data. Our goal is 
to analyze, understand, and interpret data—which are numbers in a specific  context—
not just to perform calculations.

In order to understand a data set it is necessary to know how and why the data 
were collected. In addition to considering the most widely used methods in statistical 
inference, we will consider issues in data collection and experimental design. 
Together, these topics should provide the reader with the background needed to 
read the scientific literature and to design and analyze simple research projects.

The preceding examples illustrate the kind of data to be considered in this book. 
In fact, each of the examples will reappear as an exercise or example in an appropri-
ate chapter. As the examples show, research in the life sciences is usually concerned 
with the comparison of two or more groups of observations, or with the relationship 
between two or more variables. We will begin our study of statistics by focusing on a 
simpler situation—observations of a single variable for a single group. Many of the 
basic ideas of statistics will be introduced in this oversimplified context. Two-group 
comparisons and more complicated analyses will then be discussed in Chapter 7 and 
later chapters.

 1.2  Types of Evidence
Researchers gather information and make inferences about the state of nature in a 
variety of settings. Much of statistics deals with the analysis of data, but statistical 
considerations often play a key role in the planning and design of a scientific inves-
tigation. We begin with examples of the three major kinds of evidence that one 
encounters.

example 
1.2.1

Lightning and Deafness On 15 July 1911, 65-year-old Mrs. Jane Decker was struck 
by lightning while in her house. She had been deaf since birth, but after being struck, 
she recovered her hearing, which led to a headline in the New York Times, “Light-
ning Cures Deafness.”7 Is this compelling evidence that lightning is a cure for deaf-
ness? Could this event have been a coincidence? Are there other explanations for 
her cure? ■

The evidence discussed in Example 1.2.1 is anecdotal evidence. An anecdote is 
a short story or an example of an interesting event, in this case, of lightning curing 
deafness. The accumulation of anecdotes often leads to conjecture and to scientific 
investigation, but it is predictable pattern, not anecdote, that establishes a scientific 
theory.
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The data suggest that the size of the AC in homosexual men is more like that of 
heterosexual women than that of heterosexual men. When analyzing these data, we 
should take into account two things. (1) The measurements for two of the homo-
sexual men were much larger than any of the other measurements; sometimes one 
or two such outliers can have a big impact on the conclusions of a study. (2) Twenty-
four of the 30 homosexual men had AIDS, as opposed to 6 of the 30 heterosexual 
men; if AIDS affects the size of the anterior commissure, then this factor could 
account for some of the difference between the two groups of men.8 ■

Example 1.2.2 presents an observational study. In an observational study the 
researcher systematically collects data from subjects, but only as an observer and not 
as someone who is manipulating conditions. By systematically examining all the data 
that arise in observational studies, one can guard against selectively viewing and 
reporting only evidence that supports a previous view. However, observational stud-
ies can be misleading due to confounding variables. In Example 1.2.2 we noted that 
having AIDS may affect the size of the anterior commissure. We would say that the 
effect of AIDS is confounded with the effect of sexual orientation in this study.

Note that the context in which the data arose is of central importance in statis-
tics. This is quite clear in Example 1.2.2. The numbers themselves can be used to 
compute averages or to make graphs, like Figure 1.2.1, but if we are to understand 
what the data have to say, we must have an understanding of the context in which 
they arose. This context tells us to be on the alert for the effects that other factors, 
such as the impact of AIDS, may have on the size of the anterior commissure. Data 
analysis without reference to context is meaningless.

example 
1.2.2

sexual Orientation Some research has suggested that there is a genetic basis for sex-
ual orientation. One such study involved measuring the midsagittal area of the anterior 
commissure (AC) of the brain for 30 homosexual men, 30 heterosexual men, and 30 
heterosexual women. The researchers found that the AC tends to be larger in hetero-
sexual women than in heterosexual men and that it is even larger in homosexual men. 
These data are summarized in Table 1.2.1 and are shown graphically in Figure 1.2.1.
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Figure 1.2.1 Midsagittal area of the anterior 
commissure (mm2)

table 1.2.1  Midsagittal area of the anterior 
commissure (mm2)

Group
Average midsagittal area (mm2) 

of the anterior commissure

Homosexual men 14.20

Heterosexual men 10.61

Heterosexual women 12.03
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The design of this experiment allows for the investigation of the interaction 
between two factors: sex of the dog and dose. These factors interacted in the follow-
ing sense: For females, the effect of increasing the dose from 8 to 25 mg/kg was posi-
tive, although small (the average APL increased from 133.5 to 143 U/l), but for males 
the effect of increasing the dose from 8 to 25 mg/kg was negative (the average APL 
dropped from 143 to 124.5 U/l). Techniques for studying such interactions will be 
considered in Chapter 11. ■

Example 1.2.4 presents an experiment, in that the researchers imposed the 
 conditions—in this case, doses of a drug—on the subjects (the dogs). By randomly 
assigning treatments (drug doses) to subjects (dogs), we can get around the problem 
of confounding that complicates observational studies and limits the conclusions 
that we can reach from them. Randomized experiments are considered the “gold 
standard” in scientific investigation, but they can also be plagued by difficulties.

example 
1.2.3

Health and Marriage A study conducted in Finland found that people who were 
married at midlife were less likely to develop cognitive impairment (particularly 
Alzheimer’s disease) later in life.9 However, from an observational study such as this 
we don’t know whether marriage prevents later problems or whether persons who 
are likely to develop cognitive problems are less likely to get married. ■

example 
1.2.4

toxicity in Dogs Before new drugs are given to human subjects, it is common prac-
tice to first test them in dogs or other animals. In part of one study, a new investiga-
tional drug was given to eight male and eight female dogs at doses of 8 mg/kg and 
25 mg/kg. Within each sex, the two doses were assigned at random to the eight dogs. 
Many “endpoints” were measured, such as cholesterol, sodium, glucose, and so on, 
from blood samples, in order to screen for toxicity problems in the dogs before start-
ing studies on humans. One endpoint was alkaline phosphatase level (or APL, mea-
sured in U/l). The data are shown in Table 1.2.2 and plotted in Figure 1.2.2.10
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Figure 1.2.2 Alkaline phosphatase level in dogs

table 1.2.2 Alkaline phosphatase level (U/l)

Dose (mg/kg) Male Female

8 171 150

154 127

104 152

143 105

Average 143 133.5

25 80 101

149 113

138 161

131 197

Average 124.5 143
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Often human subjects in experiments are given a placebo—an inert substance, 
such as a sugar pill. It is well known that people often exhibit a placebo response; that 
is, they tend to respond favorably to any treatment, even if it is only inert. This psy-
chological effect can be quite powerful. Research has shown that placebos are effec-
tive for roughly one-third of people who are in pain; that is, one-third of pain 
sufferers report their pain ending after being giving a “painkiller” that is, in fact, an 
inert pill. For diseases such as bronchial asthma, angina pectoris (recurrent chest 
pain caused by decreased blood flow to the heart), and ulcers, the use of placebos has 
been shown to produce clinically beneficial results in over 60% of patients.11 Of 
course, if a placebo control is used, then the subjects must not be told which group 
they are in—the group getting the active treatment or the group getting the placebo.

example 
1.2.5

Autism Autism is a serious condition in which children withdraw from normal 
social interactions and sometimes engage in aggressive or repetitive behavior. In 
1997, an autistic child responded remarkably well to the digestive enzyme secretin. 
This led to an experiment (a “clinical trial”) in which secretin was compared to a 
placebo. In this experiment, children who were given secretin improved consider-
ably. However, the children given the placebo also improved considerably. There 
was no statistically significant difference between the two groups. Thus, the favor-
able response in the secretin group was considered to be only a “placebo response,” 
meaning, unfortunately, that secretin was not found to be beneficial (beyond induc-
ing a positive response associated simply with taking a substance as part of an 
experiment).12 ■

The word placebo means “I shall please.” The word nocebo (“I shall harm”) is 
sometimes used to describe adverse reactions to perceived, but nonexistent, risks. 
The following example illustrates the strength that psychological effects can have.

example 
1.2.6

bronchial Asthma A group of patients suffering from bronchial asthma were given 
a substance that they were told was a chest-constricting chemical. After being given 
this substance, several of the patients experienced bronchial spasms. However, dur-
ing part of the experiment, the patients were given a substance that they were told 
would alleviate their symptoms. In this case, bronchial spasms were prevented. In 
reality, the second substance was identical to the first substance: Both were distilled 
water. It appears that it was the power of suggestion that brought on the bronchial 
spasms; the same power of suggestion prevented spasms.13 ■

Similar to placebo treatment is sham treatment, which can be used on animals as 
well as humans. An example of sham treatment is injecting control animals with an 
inert substance such as saline. In some studies of surgical treatments, control animals 
(even, occasionally, humans) are given a “mock” surgery.

example 
1.2.7

Renal Denervation A surgical procedure called “renal denervation” was developed 
to help people with hypertension who do not respond to medication. An early study 
suggested that renal denervation (which uses radiotherapy to destroy some nerves in 
arteries feeding the kidney) reduces blood pressure. In that experiment, patients who 
received surgery had an average improvement in systolic blood pressure of 33 mmHg 
more than did control patients who received no surgery. Later an experiment was 
conducted in which patients were randomly assigned to one of two groups. Patients in 
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the treatment group received the renal denervation surgery. Patients in the control 
group received a sham operation in which a catheter was inserted, as in the real oper-
ation, but 20 minutes later the catheter was removed without radiotherapy being 
used. These patients had no way of knowing that their operation was a sham. The 
rates of improvement in the two groups of patients were nearly identical.14 ■

BLinding

In experiments on humans, particularly those that involve the use of placebos, blinding 
is often used. This means that the treatment assignment is kept secret from the 
experimental subject. The purpose of blinding the subject is to minimize the extent 
to which his or her expectations influence the results of the experiment. If subjects 
exhibit a psychological reaction to getting a medication, that placebo response will 
tend to balance out between the two groups so that any difference between the 
groups can be attributed to the effect of the active treatment.

In many experiments the persons who evaluate the responses of the subjects are 
also kept blind; that is, during the experiment they are kept ignorant of the treatment 
assignment. Consider, for instance, the following:

In a study to compare two treatments for lung cancer, a radiologist reads X-rays to 
evaluate each patient’s progress. The X-ray films are coded so that the radiologist 
cannot tell which treatment each patient received.

Mice are fed one of three diets; the effects on their liver are assayed by a research 
assistant who does not know which diet each mouse received.

Of course, someone needs to keep track of which subject is in which group, but 
that person should not be the one who measures the response variable. The most 
obvious reason for blinding the person making the evaluations is to reduce the pos-
sibility of subjective bias influencing the observation process itself: Someone who 
expects or wants certain results may unconsciously influence those results. Such bias 
can enter even apparently “objective” measurements through subtle variation in dis-
section techniques, titration procedures, and so on.

In medical studies of human beings, blinding often serves additional purposes. 
For one thing, a patient must be asked whether he or she consents to participate in a 
medical study. Suppose the physician who asks the question already knows which 
treatment the patient will receive. By discouraging certain patients and encouraging 
others, the physician can (consciously or unconsciously) create noncomparable treat-
ment groups. The effect of such biased assignment can be surprisingly large, and it has 
been noted that it generally favors the “new” or “experimental” treatment.15 Another 
reason for blinding in medical studies is that a physician may (consciously or uncon-
sciously) provide more psychological encouragement, or even better care, to the 
patients who are receiving the treatment that the physician regards as superior.

An experiment in which both the subjects and the persons making the evalua-
tions of the response are blinded is called a double-blind experiment. The first mam-
mary artery ligation experiment described in Example 1.2.7 was conducted as a 
double-blind experiment.

The need for ConTroL groups

example 
1.2.8

clofibrate An experiment was conducted in which subjects were given the drug 
clofibrate, which was intended to lower cholesterol and reduce the chance of death 
from coronary disease. The researchers noted that many of the subjects did not take 
all the medication that the experimental protocol called for them to take. They 
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table 1.2.4 Number of colds in cold-vaccine experiment

Vaccine Placebo

n 201 203

Average number of colds  
Previous year (from memory) 5.6 5.2

Current year 1.7 1.6

% reduction 70% 69%

 calculated the percentage of the prescribed capsules that each subject took and 
divided the subjects into two groups according to whether or not the subjects took at 
least 80% of the capsules they were given. Table 1.2.3 shows that the 5-year mortality 
rate for those who took at least 80% of their capsules was much lower than the cor-
responding rate for subjects who took fewer than 80% of the capsules. On the sur-
face, this suggests that taking the medication lowers the chance of death. However, 
there was a placebo control group in the experiment and many of the placebo sub-
jects took fewer than 80% of their capsules. The mortality rates for the two placebo 
groups—those who adhered to the protocol and those who did not—are quite simi-
lar to the rates for the clofibrate groups.

The clofibrate experiment seems to indicate that there are two kinds of subjects: 
those who adhere to the protocol and those who do not. The first group had a much 
lower mortality rate than the second group. This might be due simply to better health 
habits among people who show stronger adherence to a scientific protocol for 5 years 
than among people who only adhere weakly, if at all. A further conclusion from the 
experiment is that clofibrate does not appear to be any more effective than placebo in 
reducing the death rate. Were it not for the presence of the placebo control group, the 
researchers might well have drawn the wrong conclusion from the study and attributed 
the lower death rate among strong adherers to clofibrate itself, rather than to other 
confounded effects that make the strong adherers different from the nonadherers.16 ■

example 
1.2.9

the common cold Many years ago, investigators invited university students who 
believed themselves to be particularly susceptible to the common cold to be part of 
an experiment. Volunteers were randomly assigned to either the treatment group, in 
which case they took capsules of an experimental vaccine, or to the control group, in 
which case they were told that they were taking a vaccine, but in fact were given a 
placebo—capsules that looked like the vaccine capsules but that contained lactose 
in place of the vaccine.17 As shown in Table 1.2.4, both groups reported having dra-
matically fewer colds during the study than they had had in the previous year. The 
average number of colds per person dropped 70% in the treatment group. This 
would have been startling evidence that the vaccine had an effect, except that the 
corresponding drop in the control group was 69%. ■

table 1.2.3 Mortality rates for the clofibrate experiment

Clofibrate Placebo

Adherence n 5-year mortality n 5-year mortality

Ú80% 708 15.0% 1813 15.1%

680% 357 24.6%  882 28.2%
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We can attribute much of the large drop in colds in Example 1.2.9 to the placebo 
effect. However, another statistical concern is panel bias, which is bias attributable 
to the study having influenced the behavior of the subjects—that is, people who 
know they are being studied often change their behavior. The students in this study 
reported from memory the number of colds they had suffered in the previous year. 
The fact that they were part of a study might have influenced their behavior so that 
they were less likely to catch a cold during the study. Being in a study might also have 
affected the way in which they defined having a cold—during the study, they were 
“instructed to report to the health service whenever a cold developed”—so that 
some illness may have gone unreported during the study. (How sick do you have to 
be before you classify yourself as having a cold?)

example 
1.2.10

Diet and cancer Prevention A diet that is high in fruits and vegetables may yield 
many health benefits, but how can we be sure? During the 1990s, the medical com-
munity believed that such a diet would reduce the risk of cancer. This belief was 
based on comparisons from case-control studies. In such studies patients with cancer 
were matched with “control subjects”—persons of the same age, race, sex, and so 
on—who did not have cancer; then the diets of the two groups were compared, and 
it was found that the control patients ate more fruits and vegetables than did the 
cancer patients. This would seem to indicate that cancer rates go down as consump-
tion of fruits and vegetables goes up. The use of case-control studies is quite sensible 
because it allows researchers to make comparisons (e.g., of diets, etc.) while taking 
into consideration important characteristics such as age.

Nonetheless, a case-control study is not perfect. Not all people agree to be inter-
viewed and to complete health information surveys, and these individuals thus might 
be excluded from a case-control study. People who agree to be interviewed about 
their health are generally more healthy than those who decline to participate. In 
addition to eating more fruits and vegetables than the average person, they are also 
less likely to smoke and more likely to exercise.18 Thus, even though case-control 
studies took into consideration age, race, and other characteristics, they overstated 
the benefits of fruits and vegetables. The observed benefits are likely also the result 
of other healthy lifestyle factors.* Drawing a cause–effect conclusion that fruit and 
vegetable consumption protects against cancer is dangerous. ■

hisToriCAL ConTroLs

Researchers may be particularly reluctant to use randomized allocation in medical 
experiments on human beings. Suppose, for instance, that researchers want to evalu-
ate a promising new treatment for a certain illness. It can be argued that it would be 
unethical to withhold the treatment from any patients, and that therefore all current 
patients should receive the new treatment. But then who would serve as a control 
group? One possibility is to use historical controls—that is, previous patients with the 
same illness who were treated with another therapy. One difficulty with historical 
controls is that there is often a tendency for later patients to show a better response—
even to the same therapy—than earlier patients with the same diagnosis. This ten-
dency has been confirmed, for instance, by comparing experiments conducted at the 
same medical centers in different years.19 One major reason for the tendency is that 
the overall characteristics of the patient population may change with time. For 

*A more informative kind of study is a prospective study or cohort study in which people with varying diets are 
followed over time to see how many of them develop cancer; however, such a study can be difficult to carry out.
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instance, because diagnostic techniques tend to improve, patients with a given diag-
nosis (say, breast cancer) in 2001 may have a better chance of recovery (even with the 
same treatment) than those with the same diagnosis in 1991 because they were diag-
nosed earlier in the course of the disease. This is one reason that patients diagnosed 
with kidney cancer in 1995 had a 61% chance of surviving for at least 5 years but 
those with the same diagnosis in 2005 had a 75% 5-year survival rate.20

Medical researchers do not agree on the validity and value of historical controls. 
The following example illustrates the importance of this controversial issue.

example 
1.2.11

coronary Artery Disease Disease of the coronary arteries is often treated by sur-
gery (such as bypass surgery), but it can also be treated with drugs only. Many studies 
have attempted to evaluate the effectiveness of surgical treatment for this common 
disease. In a review of 29 of these studies, each study was classified as to whether it 
used randomized controls or historical controls; the conclusions of the 29 studies are 
summarized in Table 1.2.5.21

table 1.2.5 Coronary artery disease studies

Conclusion about 
effectiveness of surgery

Type of controls Effective Not effective Total number of studies

Randomized  1 7  8

Historical 16 5 21

It would appear from Table 1.2.5 that enthusiasm for surgery is much more com-
mon among researchers who use historical controls than among those who use ran-
domized controls. ■

example 
1.2.12

Healthcare trials A medical intervention, such as a new surgical procedure or drug, 
will often be used at one time in a nonrandomized clinical trial and at another time 
in a clinical trial of patients with the same condition who are assigned to groups 
randomly. Nonrandomized trials, which include the use of historical controls, tend to 
overstate the effectiveness of interventions. One analysis of many pairs of studies 
found that the nonrandomized trial showed a larger intervention effect than the cor-
responding randomized trial 22 times out of 26 comparisons; see Table 1.2.6.22 
Researchers concluded that overestimates of effectiveness are “due to poorer prog-
nosis in non-randomly selected control groups compared with randomly selected 
control groups.”23 That is, if you give a new drug to relatively healthy patients and 
compare them to very sick patients taking the standard drug, the new drug is going 
to look better than it really is.

Even when randomization is used, trials may or may not be run double-blind. A 
review of 250 controlled trials found that trials that were not run double-blind pro-
duced significantly larger estimates of treatment effects than did trials that were 
double-blind.24 ■

table 1.2.6 Randomized versus nonrandomized trials

Larger estimate of effect of the 
(common) intervention

Not randomized Randomized Total

Number of studies 22 4 26
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Proponents of the use of historical controls argue that statistical adjustment can 
provide meaningful comparison between a current group of patients and a group of 
historical controls; for instance, if the current patients are younger than the historical 
controls, then the data can be analyzed in a way that adjusts, or corrects, for the effect 
of age. Critics reply that such adjustment may be grossly inadequate.

The concept of historical controls is not limited to medical studies. The issue 
arises whenever a researcher compares current data with past data. Whether the 
data are from the lab, the field, or the clinic, the researcher must confront the ques-
tion: Can the past and current results be meaningfully compared? One should always 
at least ask whether the experimental material, and/or the environmental conditions, 
may have changed enough over time to distort the comparison.

1.2.1 Fluoridation of drinking water has long been a con-
troversial issue in the United States. One of the first com-
munities to add fluoride to their water was Newburgh, 
New York. In March 1944, a plan was announced to begin 
to add fluoride to the Newburgh water supply on April 1 
of that year. During the month of April, citizens of 
Newburgh complained of digestive problems, which were 
attributed to the fluoridation of the water. However, 
there had been a delay in the installation of the fluorida-
tion equipment so that fluoridation did not begin until 
May 2.25 Explain how the placebo effect/nocebo effect is 
related to this example.

1.2.2 Olestra is a no-calorie, no-fat additive that is used 
in the production of some potato chips. After the Food 
and Drug Administration approved the use of olestra, 
some consumers complained that olestra caused stomach 
cramps and diarrhea. A randomized, double-blind experi-
ment was conducted in which some subjects were given 
bags of potato chips made with olestra and other subjects 
were given ordinary potato chips. In the olestra group, 
38% of the subjects reported having gastrointestinal 
symptoms. However, in the group given regular potato 
chips the corresponding percentage was 37%. (The two 
percentages are not statistically significantly different.)26 
Explain how the placebo effect/nocebo effect is related to 
this example. Also explain why it was important for this 
experiment to be double-blind.

1.2.3 (Hypothetical) In a study of acupuncture, patients 
with headaches are randomly divided into two groups. 
One group is given acupuncture and the other group is 
given aspirin. The acupuncturist evaluates the effective-
ness of the acupuncture and compares it to the results 
from the aspirin group. Explain how lack of blinding 
biases the experiment in favor of acupuncture.

1.2.4 Randomized, controlled experiments have found 
that vitamin C is not effective in treating terminal cancer 
patients.27 However, a 1976 research paper reported that 
terminal cancer patients given vitamin C survived much 

longer than did historical controls. The patients treated 
with vitamin C were selected by surgeons from a group of 
cancer patients in a hospital.28 Explain how this experi-
ment was biased in favor of vitamin C.

1.2.5 On 3 November 2009, the blog lifehacker.com con-
tained a posting by an individual with chronic toenail fun-
gus. He remarked that after many years of suffering and 
trying all sorts of cures, he resorted to sanding his toenail 
as thin as he could tolerate, followed by daily application 
of vinegar and hydrogen-peroxide-soaked bandaids on 
his toenail. He repeated the vinegar peroxide bandaging 
for 100 days. After this time his nail grew out and the fun-
gus was gone. Using the language of statistics, what kind 
of evidence is this? Is this convincing evidence that this 
procedure is an effective cure of toenail fungus?

1.2.6 For each of the following cases [(a) (b)],
(I) state whether the study should be observational or 

experimental.
(II) state whether the study should be run blind, double-

blind, or neither. If the study should be run blind or 
double-blind, who should be blinded?
(a) An investigation of whether taking aspirin 

reduces one’s chance of having a heart attack.
(b) An investigation of whether babies born into 

poor families (family income below $25,000) are 
more likely to weigh less than 5.5 pounds at birth 
than babies born into wealthy families (family 
income above $65,000).

1.2.7 For each of the following cases [(a) and (b)],
(I) state whether the study should be observational or 

experimental.
(II) state whether the study should be run blind, double-

blind, or neither. If the study should be run blind or 
double-blind, who should be blinded?
(a) An investigation of whether the size of the 

midsagittal plane of the anterior commissure 

Exercises 1.2.1–1.2.10
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(a part of the brain) of a man is related to the 
sexual orientation of the man.

(b) An investigation of whether drinking more than 
1 liter of water per day helps with weight loss for 
people who are trying to lose weight.

1.2.8 (Hypothetical) In order to assess the effectiveness of a 
new fertilizer, researchers applied the fertilizer to the tomato 
plants on the west side of a garden but did not fertilize the 
plants on the east side of the garden. They later measured the 
weights of the tomatoes produced by each plant and found 
that the fertilized plants grew larger tomatoes than did the 
nonfertilized plants. They concluded that the fertilizer works.
(a) Was this an experiment or an observational study? Why?
(b) This study is seriously flawed. Use the language of 

statistics to explain the flaw and how this affects the 
validity of the conclusion reached by the researchers.

(c) Could this study have used the concept of blinding 
(i.e., does the word “blind” apply to this study)? If so, 
how? Could it have been double-blind? If so, how?

1.2.9 Reseachers studied 1,718 persons over age 65 living 
in North Carolina. They found that those who attended 
religious services regularly were more likely to have 
strong immune systems (as determined by the blood lev-
els of the protein interleukin-6) than those who didn’t.29 
Does this mean that attending religious services improves 
one’s health? Why or why not?

1.2.10 Researchers studied 300,818 golfers in Sweden 
and found that the “standardized mortality ratios” for 
golfers, adjusting for age, sex, and socioeconomic status, 
were lower than for nongolfers, meaning that golfers tend 
to live longer.30 Does this mean that playing golf improves 
one’s health? Why or why not?

 1.3  Random Sampling
In order to address research questions with data, we first must consider how those 
data are to be gathered. How we gather our data has tremendous implications on 
our choice of analysis methods and even on the validity of our studies. In this section 
we will examine some common types of data-gathering methods with special empha-
sis on the simple random sample.

sAmpLes And popuLATions

Before gathering data, we first consider the scope of our study by identifying the 
population. The population consists of all subjects/animals/specimens/plants, and so 
on, of interest. The following are all examples of populations:

• All birch tree seedlings in Florida

• All raccoons in Montaña de Oro State Park

• All people with schizophrenia in the United States

• All 100-ml water specimens in Chorro Creek

Typically we are unable to observe the entire population; therefore, we must be con-
tent with gathering data from a subset of the population, a sample of size n. From 
this sample we make inferences about the population as a whole (see Figure 1.3.1). 
The following are all examples of samples:

• A selection of eight (n = 8) Florida birch seedlings grown in a greenhouse.

Population
Inference

Random sampling

Sample of n

Figure 1.3.1 Sampling 
from a population
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• Thirteen (n = 13) raccoons captured in traps at the Montaña de Oro  campground.

• Forty-two (n = 42) patients with schizophrenia who respond to an advertise-
ment in a U.S. newspaper.

• Ten (n = 10) 100-ml vials of water collected one day at 10 locations along 
Chorro Creek.

Remark There is some potential for confusion between the statistical meaning of 
the term sample and the sense in which this word is sometimes used in biology. If a 
biologist draws blood from 20 people and measures the glucose concentration in 
each, she might say she has 20 samples of blood. However, the statistician says she 
has one sample of 20 glucose measurements; the sample size is n = 20. In the inter-
est of clarity, throughout this book we will use the term specimen where a biologist 
might prefer sample. So we would speak of glucose measurements on a sample of 20 
specimens of blood.

Ideally our sample will be a representative subset of the population; however, 
unless we are careful, we may end up obtaining a biased sample. A biased sample 
systematically overestimates or systematically underestimates a characteristic of the 
population. For example, consider the raccoons from the sample described previously 
that are captured in traps at a campground. These raccoons may systematically differ 
from the population; they may be larger (from having ample access to food from 
dumpsters and campers), less timid (from being around people who feed them), and 
may be even longer lived than the general population of raccoons in the entire park.

One method to ensure that samples will be (in the long run) representative of 
the population is to use random sampling.

definiTion of A simpLe rAndom sAmpLe

Informally, the process of obtaining a simple random sample can be visualized in 
terms of labeled tickets, such as those used in a lottery or raffle. Suppose that each 
member of the population (e.g., raccoon, patient, plant) is represented by one ticket, 
and that the tickets are placed in a large box and thoroughly mixed. Then n tickets 
are drawn from the box by a blindfolded assistant, with new mixing after each ticket 
is removed. These n tickets constitute the sample. (Equivalently, we may visualize 
that n assistants reach in the box simultaneously, each assistant drawing one ticket.)

More abstractly, we may define random sampling as follows.

*Technically, requirement (b) is that every pair of members of the population has the same chance of being 
selected for the sample, every group of 3 members of the population has the same chance of being selected for 
the sample, and so on. In contrast to this, suppose we had a population with 30 persons in it and we wrote the 
names of 3 persons on each of 10 tickets. We could then choose one ticket in order to get a sample of size n = 3, 
but this would not be a simple random sample, since the pair (1,2) could end up in the sample but the pair (1,4) 
could not. Here the selections of members of the sample are not independent of each other. (This kind of sam-
pling is known as “cluster sampling,” with 10 clusters of size 3.) If the population is infinite, then the technical 
definition that all subsets of a given size are equally likely to be selected as part of the sample is equivalent to the 
requirement that the members of the sample are chosen independently.

A Simple Random Sample
A simple random sample of n items is a sample in which (a) every member of the 
population has the same chance of being included in the sample, and (b) the 
members of the sample are chosen independently of each other. [Requirement 
(b) means that the chance of a given member of the population being chosen 
does not depend on which other members are chosen.]*



28 Chapter 1 Introduction

Simple random sampling can be thought of in other, equivalent, ways. We may 
envision the sample members being chosen one at a time from the population; under 
simple random sampling, at each stage of the drawing, every remaining member of 
the population is equally likely to be the next one chosen. Another view is to con-
sider the totality of possible samples of size n. If all possible samples are equally 
likely to be obtained, then the process gives a simple random sample.

empLoying rAndomness

When conducting statistical investigations, we will need to make use of randomness. 
As previously discussed, we obtain simple random samples randomly—every mem-
ber of the population has the same chance of being selected. In Chapter 7 we shall 
discuss experiments in which we wish to compare the effects of different treatments 
on members of a sample. To conduct these experiments we will have to assign the 
treatments to subjects randomly—so that every subject has the same chance of 
receiving treatment A as they do treatment B.

Unfortunately, as a practical matter, humans are not very capable of mentally 
employing randomness. We are unable to eliminate unconscious bias that often leads us 
to systematically exclude or include certain individuals in our sample (or at least decrease 
or increase the chance of choosing certain individuals). For this reason, we must use 
external resources for selecting individuals when we want a random sample: mechanical 
devices such as dice, coins, and lottery tickets; electronic devices that produce random 
digits such as computers and calculators; or tables of random digits such as Table 1 in the 
back of this book. Although straightforward, using mechanical devices such as tickets in 
a box is impractical, so we will focus on the use of random digits for sample selection.

how To Choose A rAndom sAmpLe

The following is a simple procedure for choosing a random sample of n items from a 
finite population of items.

 (a) Create the sampling frame: a list of all members of the population with unique 
identification numbers for each member. All identification numbers must have 
the same number of digits; for instance, if the population contains 75 items, the 
identification numbers could be 01, 02, . . . , 75.

 (b) Read numbers from Table 1, a calculator, or computer. Reject any numbers that 
do not correspond to any population member. (For example, if the population 
has 75 items that have been assigned identification numbers 01, 02, . . . , 75, then 
skip over the numbers 76, 77, . . . , 99, and 00.) Continue until n numbers have 
been acquired. (Ignore any repeated occurrence of the same number.)

 (c) The population members with the chosen identification numbers constitute the 
sample.

The following example illustrates this procedure.

example 
1.3.1

Suppose we are to choose a random sample of size 6 from a population of 75 mem-
bers. Label the population members 01, 02, . . . , 75. Use Table 1, a calculator, or a 
computer to generate a string of random digits.* For example, our calculator might 
produce the following string:

8 3 8 7 1 7 9 4 0 1 6 2 5 3 4 5 9 7 5 3 9 8 2 2

*Most calculators generate random numbers expressed as decimal numbers between 0 and 1; to convert these to 
random digits, simply ignore the leading zero and decimal and read the digits that follow the decimal. To generate 
a long string of random digits, simply call the random number function on the calculator repeatedly.
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As we examine two-digit pairs of numbers, we ignore numbers greater than 75 as 
well as any pairs that identify a previously chosen individual.

 8 3    8 7  1 7   9 4  0 1 6 2 5 3 4 5   9 7    5 3   9 8  2 2

Thus, the population members with the following identification numbers will consti-
tute the sample: 17, 01, 62, 53, 45, 22. ■

Remark In calling the digits in Table 1 or your calculator or computer random dig-
its, we are using the term random loosely. Strictly speaking, random digits are digits 
produced by a random process—for example, tossing a 10-sided die. The digits in 
Table 1 or in your calculator or computer are actually pseudorandom digits; they are 
generated by a deterministic (although possibly very complex) process that is 
designed to produce sequences of digits that mimic randomly generated sequences.

Remark If the population is large, then computer software can be quite helpful in 
generating a sample. If you need a random sample of size 15 from a population with 
2,500 members, have the computer (or calculator) generate 15 random numbers 
between 1 and 2,500. (If there are duplicates in the set of 15, then go back and get 
more random numbers.)

prACTiCAL ConCerns when rAndom sAmpLing

In many cases, obtaining a proper simple random sample is difficult or impossible. 
For example, to obtain a random sample of raccoons from Montaña de Oro State 
Park, one would first have to create the sampling frame, which provides a unique 
number for each raccoon in the park. Then, after generating the list of random num-
bers to identify our sample, one would have to capture those particular raccoons. 
This is likely an impossible task.

In practice, when it is possible to obtain a proper random sample, one should. 
When a proper random sample is impractical, it is important to take all precautions 
to ensure that the subjects in the study may be viewed as if they were obtained by 
random sampling from some population. That is, the sample should be comprised of 
individuals that all have the same chance of being selected from the population, and 
the individuals should be chosen independently. To do this, the first step is to define 
the population. The next step is to scrutinize the procedure by which the observa-
tional units are selected and to ask: Could the observations have been chosen at 
random? With the raccoon example, this might mean that we first define the popula-
tion of raccoons by creating a sharp geographic boundary based on raccoon habitat 
and place traps at randomly chosen locations within the population habitat using a 
variety of baits and trap sizes. (We could use random numbers to generate latitude 
and longitude coordinates within the population habitat.) Although still less than 
ideal (some raccoons might be trap shy, and baby raccoons may not enter the traps 
at all), this is certainly better than simply capturing raccoons at one nonrandomly 
chosen atypical location (e.g., the campground) within the park. Presumably, the vast 
majority of raccoons now have the same chance of being trapped (i.e., equally likely 
to be selected), and capturing one raccoon has little or no bearing on the capture of 
any other (i.e., they can be considered to be independently chosen). Thus, it seems 
reasonable to treat the observations as if they were chosen at random.

nonsimpLe rAndom sAmpLing meThods

There are other kinds of sampling that are random in a sense, but that are not simple. 
Two common nonsimple random sampling techniques are the random cluster sample 
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and stratified random sample. To illustrate the concept of a cluster sample, consider a 
modification to the lottery method of generating a simple random sample. With clus-
ter sampling, rather than assigning a unique ticket (or ID number) for each member 
of the population, IDs are assigned to entire groups of individuals. As tickets are 
drawn from the box, entire groups of individuals are selected for the sample as in the 
following example and Figure 1.3.2.

example 
1.3.2

La Graciosa thistle The La Graciosa thistle (Cirsium loncholepis) is an endangered 
plant native to the Guadalupe Dunes on the central coast of California. In a seed 
germination study, 30 plants were randomly chosen from the population of plants in 
the Guadalupe Dunes and all seeds from the 30 plants were harvested. The seeds 
form a cluster sample from the population of all La Graciosa thistle seeds in Guada-
lupe while the individual plants were used to identify the clusters.31 ■

A stratified random sample is chosen by first dividing the population into 
strata—homogeneous collections of individuals. Then, many simple random samples 
are taken—one within each stratum—and combined to comprise the sample (see 
Figure 1.3.3). The following is an example of a stratified random sample.

Population

Sample

Figure 1.3.3 Stratified 
random sampling. The dots 
represent individuals 
within the population that 
are grouped into strata. 
Individuals from each 
stratum are randomly 
sampled and combined to 
form the sample.

Population

Sample

Figure 1.3.2 Random 
cluster sampling. The dots 
represent individuals 
within the population that 
are grouped into clusters 
(circles). Individuals in 
entire clusters are sampled 
from the population to 
form the sample.




